
Halloween Ghost Images with IR motion sensor. (9/22/19)

The system makes ghostly images on a TV screen from objects that move in front of a camera.
If there is no movement, the image fads away to a blank screen
The system runs on a Windows 10 PC. The program ArtDisTest1, written in the Processing
language, was obtained from the Visual World Investigate Lab of the NC Museum of Natural
Sciences. See Appendix 2 for the Processing code.

A camera mounted on a TV monitor feeds the Windows PC and the PC feeds the monitor.

As an enhancement to this system, we added sound to the TV images. The sound system runs on a
Raspberry Pi. An Infra-Red motion sensor, HC-SR501, is connected to the Rasp Pi. The Rasp Pi
monitors the output of the sensor and plays and audio clip when motion is detected. There are 25
audio clips of various short phrases such as “come closer”. The program cycles through these audio
clips each time it receives a signal from the motion sensor.

The program is written is Python and can run on a Raspberry Pi-Zero.
The program is called ir_sensor.py and is in the /home/pi/ir_sensor directory. The audio effects
files are stored in the /home/pi/distance/distance_audio_clips directory. The file names of the
audio clips are 1.mp3, 2.mp3, ……., to 25.mp3. The program also continuously plays a background
spooky audio track, eerie.mp3.
The folder /home/pi/distance_audio_clips/list1 contains all the audio filess.

Additionally, the program also records the list of files played and the date and time in the logfile.txt
text file. This file is in the /home/pi/ir_sensor directory.

The python code is in appendix 1

The Raspberry Pi Zero does not have an analogue audio output.
For this one will need an HDMI to VGA adaptor with an audio output and an HDMI micro to HDMI
adaptor.

An alternative solution can be to add analog audio to the Pi Zero. See Appendix 3

To run the program automatically on startup:

1

Create a linux shell script autoexec.sh in the /home/pi directory with the following lines:
cd ir_sensor
sudo python ir_sensor.py

Note that the autoexec.sh must be an executable file. To make it executable, at the command enter:
chmod +x autoexec.sh

In order to have the system run automatically when power is applied, the file: .desktop must be in the
folder /home/pi/.config/autostart.
Create the autostart folder in the .config directory using the mkdir command.
Create the .desktop file in the autostart directory using the sudo nano command.
Here are the three lines in the .desktop file:

[Desktop Entry]
Type = Application
Exec = lxterminal -e ./autoexec.sh

Note that to run an executable file, it must be preceded by the: ./ before the file name.

The 25 audio clips, see appendix 4, lists the audio files with the text contained in them.

The audio files of the special effect must be recorded by an announcer.
To convert wma files to mp3 files use https://online-audio-converter.com/. The system will
play .mp3, .wav files as well as other formats.

The system will to play a background music track. The file is called eerie_sounds_7Hr.mp3 and
must be in the distance_audio_clips directory. The gain is set to -1800 and the loop option is
selected.

This is done automatically using the threading function (see the code below) in Python.
To change the file, replace the eerie.mp3 in the zzz = definition with a new file.
There is a utility program (play_all.py) in the distance directory which will play all of the audio files in
the distance_audio_clips directory. To use it, at the command line enter python play_all.py.

2

3

Appendix 1
The Python file ir_sensor.py

PIR sensor

import RPi.GPIO as GPIO #Import GPIO library
import time #Import time library
import os
import threading
import datetime

gain = str(-1200) #sets the gain of the audio output

GPIO.setmode(GPIO.BOARD) #Set GPIO pin numbering
pir = 26 #Associate pin 26 to pir
GPIO.setup(pir, GPIO.IN) #Set pin as GPIO in

####################### threading Plays the background music file eerie_sounds_7Hr.mp3

def play_clip():
 playing_clip = 1
 zzz = 'omxplayer ' + ' -o both --vol -1800 --loop '
+'/home/pi/distance/distance_audio_clips/eerie_sounds_7Hr.mp3'
 print zzz
 os.system(zzz)

threading.Thread(target=play_clip).start() #Plays background music
#########################

j=1 #### Sound file index number Gets incemented after each playback
i=1 ### dummy variable for loop

while 1==1: ##

 print "Waiting for sensor to settle ",j
 time.sleep(2) #Waiting 2 seconds for the sensor to initiate
 print "Detecting motion"

 while True:

4

 filename = str(j)+'.mp3' # sets the file name to be played
 if GPIO.input(pir): #Check whether pir is HIGH
 ttime = datetime.datetime.now() # saves the detection time
 print "Motion Detected! ", filename,' ',str(ttime)[0:19] #
 xxx='omxplayer -o both --vol '+gain+ ' /home/pi/distance/distance_audio_clips/'+filename
 os.system(xxx) ## Play audio clip
 if j == 25: #
 j=0
 j=j+1
 print "Detecting motion"
 file = open ('/home/pi/ir_sensor/logfile.txt','a')
 file.write(filename + ' '+str(ttime)[0:19]+'\n')
 file.close()

 time.sleep(2) #D1- Delay to avoid multiple detection
 time.sleep(0.1) #While loop delay should be less than detection(hardware) delay

5

Appendix 2 Processing code

import processing.core.*;
import processing.data.*;
import processing.event.*;
import processing.opengl.*;

import gab.opencv.*;
import processing.video.*;
import java.awt.*;

import java.util.HashMap;
import java.util.ArrayList;
import java.io.File;
import java.io.BufferedReader;
import java.io.PrintWriter;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;

public class ArtDisTest1 extends PApplet {

Capture video;

OpenCV opencv;

int green = 0, red = 252, blue = 0, stage = 0, step = 7;

public void setup() {

 background(255);
 video = new Capture(this, 1280, 720);
 opencv = new OpenCV(this, 1280, 720);

 opencv.startBackgroundSubtraction(5,3,0.5f);

 video.start();
}

public void draw() {
 fill(0, 25);
 rect(-5, -5,1930,1090);

6

 scale(1.5f,1.5f);
 opencv.loadImage(video);
 opencv.flip(OpenCV.HORIZONTAL);
 opencv.updateBackground();

 opencv.dilate();
 opencv.erode();

 //shades
if(stage == 0) {
 if(green == 252) {
 stage = 1;
 }else{ green = green + step;}
 }else if(stage == 1) {
 if(red == 0) {
 stage = 2;
 }else{ red = red - step;}
 }else if(stage == 2) {
 if(blue == 252) {
 stage = 3;
 }else{ blue = blue + step;}
 }else if(stage == 3) {
 if(green == 0) {
 stage = 4;
 }else{ green = green - step;}
 }else if(stage == 4) {
 if(red == 252) {
 stage = 5;
 }else{ red = red + step;}
 }else if(stage == 5) {
 if(blue == 0) {
 stage = 0;
 }else{ blue = blue - step;}
 }

 noFill();
 stroke(red, green, blue);
 strokeWeight(3);
 for (Contour contour : opencv.findContours()) {
 contour.draw();
 }
}

public void captureEvent(Capture c) {
 c.read();

7

}
 public void settings() { fullScreen(); }
 static public void main(String[] passedArgs) {
 String[] appletArgs = new String[] { "--present", "--window-
color=#666666", "--hide-stop", "ArtDisTest1" };
 if (passedArgs != null) {
 PApplet.main(concat(appletArgs, passedArgs));
 } else {
 PApplet.main(appletArgs);
 }
 }
}

8

Appendix 3 Pi-Zero analog audio output

How Other Pi's Create Audio

hƩps://learn.adafruit.com/introducing-the-raspberry-pi-zero/audio-outputs

GPIO #18 is also known as PWM0 and in the original Pi was coupled with a very basic RC filter to create the
audio output:

If you don't mind geƫng a few 150 and 270 ohm resistors, and two each of about 33nF (also known as
0.033uF) and 10uF capacitors, you can basically recreate those two filters.

Now all you need is access to PWM0_OUT and PWM1_OUT, which are...on GPIO #40 and #45 and are not
brought out on the Pi Zero. Tragedy? Give up? No! You can get to PWM0 on GPIO #18 (ALT5) and PWM1 on
GPIO #13 (ALT0) or GPIO #19 (ALT5)

Simply adding the following line to your /boot/config.txt will reconfigure the pins at boot without any
external software or services:
 dtoverlay=pwm-2chan,pin=18,func=2,pin2=13,func2=4

9

10

Appendix 4 List of the audio files in the list1 sub-directory.
(/home/pi/distance/distance_audio_clips/list1)

1.mp3 'you are too close!'
2.mp3 'stop moving'
3.mp3 'move right'
4.mp3 'move leŌ'
5.mp3 'Look out'
6.mp3
7.mp3 'Be quiet'
8.mp3 'Wave your arm'
9.mp3 'Come closer'
10.mp3 'Who is that'
11.mp3 'Where are you'
12.mp3 'Go away'
13.mp3 'someone is watching you'
14.mp3 'The great pumpkin is aŌer you'
15.mp3 'The witches are watching'
16.mp3
17.mp3 'proceed at your own risk'
18.mp3 'Be afraid'
19.mp3 'Beware of Dracula'
20.mp3 'Frankenstein is coming'
21.mp3 'Do not move'
22.mp3 'get help'
23.mp3 'no one can save you now'
24.mp3
25.mp3 'Please do not step on the rats'

11

Appendix 5

12

