
1

Python GPS1 system 10/18/22 gps-xxx-xx.py

Overview

The GPS system was designed to play audio clips along the route of the
New Hope Valley Railroad. The initial motivation was to play sound
effects during the Halloween train rides. At a specified latitude and
longitude, the device would play a specific sound effect.

After the system is powered up, it may take the GPS receiver a couple of
minutes to lock on to enough satellites to retrieve valid data. The
system then runs autonomously. On startup, the LED indicator will come
on after the Linux system loads and the python application has been
launched. This takes less than a minute. The indicator will begin to flash
when the GPS receiver is locked and is sending valid data to the system.
This could take several minutes, depending on the atmospheric
conditions.

In normal operation the LED will flash approximately once per second.
The LED will remain on when the system is capturing and storing positional data. (See ctrl-c functions)

2

If a background audio track exists, it will begin to play.

Requirements

The system was designed around a Raspberry Pi computer. The
software was written in Python 2.7. To configure and maintain the
system, the users needs to have a minimum amount of knowledge of
Linux, the text-based operating system on the Raspberry Pi and a
working knowledge spreadsheets.

The GPS receiver chosen is the Globecast BU353. .

It is a sealed weather proof unit with a USB interface and costs about
$35.

See Appendix 8 for details on building the system on the Raspberry Pi.

Executive summary

You need to have a list of the latitudes at which to you want to play a
sound track. Use the ctrl-c feature to capture the data. See below for
details.

You need to create a .csv file that contains the latitude, the filename, the
volume level (usually 0). This file can be made with EXEL or Libre calc,
which is installed on the Raspberry Pi.

The column in the spreadsheet are:

 A latitude
 B longitude (set to zero)
 C The location name
 D Audio file to be played going north bound
 E Audio gain level for northbound clip (usually 0)
 F Audio file to be played going south bound
 G Audio gain level for southbound clip (usually 0)

The latitudes can be captured by using the utility in the ctrl-c function.

3

Example of a gps_data.csv file

DO NOT leave line 1 blank!

Save this file with the name: gps_data. Save as type , .csv. This is a
Comma delimited file. The file name will be gps_data.csv

This file must be in the /home/pi/gps_2017 directory.

The gps_data.csv file can be edited offline, on a desktop computer, with
EXEL. Copy this file to a flash drive with the name USB_DISK.

If this flash drive is in the Raspberry Pi it will upload the gps_data.csv file
to the /home/pi/gps_2017 folder on boot up.

You need the sound tracks that will be played at each latitude. They can
be .mp3 files or .wav files.

Make sure the audio files are in the /home/pi/gps_2017/audio_tracks
directory.

There are utilities to check to see if files are missing and to play each file.
See Utilities below.

The system creates the following files: logfile.txt, play.txt and
datafile.txt .

4

The last two lines in the gps_data.csv file are unique. The background audio track
should be entered in the next to last line. The latitude of the bottom line should be
set to 50 and the line above should be set to 40

To play a background audio track, enter the data on the next to the last row. Enter
the name of the track in column 4, the gain in column 5 and the number of times the
track needs to be repeated in column 7.

To display the name of the csv file, enter the name in column 3 of the last row.

 1 2 3 4 5 6 7

In the above example, the background audio track is xmas_90_minute_track.mp3,
where the gain is set to -3 and it will be repeated 2 times.

The name of the .csv file is Xmas_12/21/19 With Background.

Table of Contents

5

Appendix 1 Omxplayer commands

Appendix 2 USB_DISK boot routine

Appendix 3 Pi-Zero analog audio

Appendix 4 Controlling the Pi with PUTTY and FILEZILLA

Appendix 5 Controlling the Pi with VNC

Appendix 6 Setting static IP address

Appendix 7 Stopping an audio clip

Appendix 8 Building the GPS system on the SD card.

Appendix 9 Run a python program on boot up

Appendix 10 Mplayer commands

Appendix 11 Auto-correct for Daylight Savings Time

Appendix 12 Emulate a key press in a Python script.

gps1.py Program Flow

1- Import from libraries
2- Set GPIO on Rasp Pi
3- Set variables
4- Upload and Download to Flash Drive
5- Load location data from .CSV file
6- Format date and time to EST and 12 Hr
7- Create Thread to play audio clip
8- Create Thread for background music
9- Set Delta to find location
10- Run gpssock
11- Run the GPS Thread from Dan Mendel
12- Save data to logfile.txt
13- Check for gps lock
14- Find DST data
15- Keyboard interrupt ctrl-c from Robert Malkin
16- Store Latitude and Longitude to datafile.txt or change time or play audio track

6

Details

All of the files are located in the /home/pi/gps_2017 folder.

To begin the process, we have to know the latitude of the locations that will play the
audio clip. This version does not use the longitude data.

GPS2 uses both latitude and longitude. The GPS1 system uses only latitude. This
allows the system to play different audio tracks when going northbound and
southbound.

Next, you need to know the file names of the audio clips that are to be played.

 The file in which this information is assembled is named: gps_data.csv.

This is a spreadsheet file, saved in the .csv format (Comma Separated Values). The
Python library has a module to read .csv files. This data, in this .csv file, is read into
the system by the program load_csv_data.py.

The gps_data.csv contains seven fields:
Latitude
Longitude
Location
Audio track northbound
Volume level northbound
Audio track southbound
Volume level southbound

Example of a gps_data_csv file

7

When the csv file is loaded into the system it adds another field the location number.
In this case it would be 0 to 13. This can be used to play the audio clips using the
play.py utility program.

Note: There cannot be an empty row at the top of this spreadsheet. If there is, the
load_csv_data.py program will crash.

Hint: You can store different data files by adding a descriptive suffix to the
name. For example, save the gps_data.csv as gps_data_halloween_10-20-
18.csv. Remember to load all of the audio files listed in the gps_data .csv file into
the audio_tracks folder. Use the check_for_audio_files.py utility to insure you
have loaded all of the required files.

Above is a listing of the data files in the system.

Use the cp command to change the gps_data.csv file. For example to use the
gps_data_fearr3.csv file, at the command line in the /home/pi/gps_2017 directory,
enter: cp gps_data_fear3.csv gps_data.csv

8

WARNING: The cp command will overwrite the existing file without warning!

HINT: You can add another row to the spreadsheet. In column C, the location
column, add a descriptive name for this file. It will be displayed on the monitor. In
this example the file name is gps_data_halloween_10-20-18.csv file.

The last few lines of the gps_data.csv file showing the name of the data file.
Note that the name of the .csv file is gps_data_download.csv. That is the file name
of the gps_data.csv file when it is copied to the USB_DISK Flash Drive on boot up.

The name was changed because the file gps_data.csv on the Flash Drive will
automatically upload to the SD drive during bootup. See USB boot below.

The latitude was set to 40 so it will always be the last location when sorted by
latitude. You could also just copy line 38 and paste it in line 39. Then change cell C39

9

to the title that you want displayed.

LX TERMINAL display

The last two or three lines show: The name of the gps_data.csv file, name of the file
that is being run and the version of the file.

>>>>>>>>>>>>>>>>>Add the background music file running<<<<<<<<<<<<<<<<<<<

The main program that operates when the train is running is named
gps1.py. The program that loads the data from the spreadsheet is, as
stated above, load_csv_data.py. This program is run by the import
command in the main program.

When the GPS receiver has acquired enough satellites to lock, the date is
stored in the text file read_data.txt. This file is then read by the

10

find_dst_import.py routine to determine whether the time standard is
DST or EST.

As stated above the audio files are stored in the folder
/home/pi/gps_2017/audio_tracks. The names are formatted in the
name_length.mp3. The length is four digits and is the duration of the clip
in seconds.

For example: There is an audio clip of a “demented man walking” that is
16 seconds in duration. The file name is:
demented_man_walking_0016.mp3.

This format was selected so that the audio clips can be easily
sorted by length.

When the system is running, and an audio clip is played, the program
records the location number, the direction of travel (n or s), date and
time, audio file name, location and the file name of the gps program file.
This information is stored in the logfile.txt file. It can easily be imported
into a spreadsheet for future use.

Tip: When creating or editing the gps_data.csv file, it is best
to copy the audio file names from the audio_tracks
directory and paste them into the spreadsheet file. This will
reduce typographic errors.

To do this, create a text file of the audio tracks, go to the
/home.pi.gps_2017/audio_tracks folder. Use the
command: ls > audio_files.txt.(The “>” redirects the “ls”
command from the screen to the text file.) Then open the
file audio_files.txt, in a spreadsheet to copy and paste the
names into the gps_data.csv file.

Similarly, the latitude data from the datafile.txt should be
pasted into this spreadsheet file.

Ctrl-c operations

The Ctrl-c performs the following functions:

11

Note: The ctrl-c stops the background audio track. To restart the track enter background.

1- Logs the latitude and longitude of the position to datafile.txt.
2- Plays a music track.
3- Starts or re-starts the background audio track.
4- If a monitor is connected to the Raspberry Pi and you press the ctrl-c

keys, the system will prompt you to:
a- enter a location OR est or dst OR music.
b- Without a monitor you can still enter any of the options. Whatever

is entered will be saved in the datafile.txt.
This logging will work without a monitor.

Operations after ctrl-c is pressed

est Sets system time to eastern standard time
dst Set system time to eastern daylight saving time
tone Plays a 440 Hz tone for 20 minutes
tone1k Plays a 1000 Hz tone
voice Plays a voice track for 50 minutes

 To stop playing these tracks, press the “q” key.

1- In order to log the position of a location that you wish to have an
audio file play, press the ctrl-c keys. The LED will stay on. Type in

the name of this location and press enter. The LED will begin to
flash. The data is saved in the file datafile.txt. Note that the

datafile records the latitude and the longitude. The longitude is
not used in this version.

This file can be opened by a spreadsheet program and the data used to
make the gps_data.csv file.

2- To play a music track, press the ctrl-c keys, type the word music
and press the enter key. To stop playing press the q key.

3- To restart the background audio track, press ctrl-c, type the word
background and press enter.

12

Utility files:

 check_for_audio_files.py
 check_for_audio_filesPC.py
 play_nb.py
 play_sb.py
 playcsv.py
 play.py
 text_file_2_array.py (This file is used by the play.py utility.

These files help to manage the audio clips stored in the audio_tracks
folder.

The check_for_audio_files.py loads the gps_data.csv file and compares
the audio file names found, with the files in the audio_tracks directory.
If it cannot find a file, it lists the file in the missing_audio.txt file. If the
flash drive is mounted on the system, the missing_audio.txt file is
copied to it.

To use this utility program:

Open a new window
At the command line, change to the gps_2017 directory by typing:

cd gps_2017 (change directory)
At the command line enter: python check_for_audio_files.py

Th e check_for_audio_filesPC.py runs on a PC system.

13

This is what the screen looks like if a file is missing.

This is what the screen looks like if there are no missing audio files.

The utility files play_ nb.py and the play_ sb.py will play all of the audio tracks that
will be played on the route based on the contents of the load_csv_data.csv file. To
play them in the proper sequence, the gps_data.csv file should be sorted by the
latitude column.

To use the these utility programs:

Open a new window
At the command line, change to the gps_2017 directory by typing:

cd gps_2017 (change directory)
At the command line enter: python play_ nb.py or

 python play_ sb.py

Tip: When using these utility programs, pressing the q key will stop the
audio clip that is playing and start the next clip. See all of the omxplayer
commands in appendix 1.

play.py

This utility program will play any clip in the audio_tracks folder at any volume level

14

At the command line, in the gps_2017 folder type:
 python play.py

The screen will display all of the audio files in the audio_tracks folder and assign an
index number to each file. It will then prompt you to enter the file number.
It will then prompt you to enter a gain level. This can be any number between -2500
and +1000. To double the gain of the audio clip enter 600. This will increase the
volume level by 6 db (decibels). Similarly to reduce the level by half, enter -600. This
will decrease the volume level by -6 db .
The program will then play the audio file with the gain level that was entered.
If the gain was OK, you can save the information for future reference to the file
saved.txt by entering the y key when prompted.

If you wish to replay the audio clip, launch the program again and when prompted to
enter a file name, hit the Enter key. If you wish to change the gain, at the prompt,
enter a new gain number and hit Enter key. If you wish to play the file at the same
level just hit the ENTER key and it will play it at the previous gain level.
The previous file name and previous gain level are stored in the play_last.txt file.

Note that it is more convenient to have subfolders which contain the
audio files for specific events. For example, a Halloween effects folder
and Bonsal test files folder. When using these audio files, copy them
from the subfolder to the audio_tracks folder.

playcsv.py

This utility program will play any clip in the gps_data.csv file at any volume level.

At the command line, in the gps_2017 folder type: python playcsv.py

Below shows the screen when the program is run. Number 32 was entered, the
jingle_bell_rock_0158.wav file. The gain entered was 100 and the audio clip was
played. The clip playback can be cancelled by pressing the q key (for quit).

Note that the screen shows the ‘Last Played: “ file was frosty_0210.wav. If you wish
to replay that file, just hit the Enter key. Then enter the desired gain.

You can save the data to the saved.txt file by entering Y or y.

15

You can save the data to the saved.txt file by selecting Y.
Below are the last few lines in the saved.txt file.

n

16

In summary:

The following files need to be in the operational directory: (/home/pi/gps_2017)

gps1.py (The main operating program)

gps_data.csv (The spreadsheet file containing the data)

load_csv_data.py (Loads the spreadsheet data)
gpssock.sh (see Appendix 8)
play_ nb.py (Utility to play audio tracks)
play_ sb.py (Utility to play audio tracks)
play.py (Utility to play and change the audio tracks)

text_file_2_array.py (This file is used by the play.py file.)
playcsv.py (Utility to play only files in gps_data.csv)

check_for_audio_files.py
.desktop (This file is in the /home/pi/.config/autostart folder see Appendix 8)

The following files will be created:

logfile.txt (logs whenever an audio clip is played)
datafile.txt (store latitude data captured by ctrl-c)

bootlog.txt (Stores data from the last startup)
missing_audio.txt (Created by the check_for_audio_files.py) file.)

saved.txt (Stores file names and gain of all the audio files played)
play_last.txt (Stores data of the last audio files played by play.py)
play_last_csv.txt (Stores data of the last audio files played by (playcsv.py)

The sound effects tracks are played using omxplayer. This is part of the
NOOB’s installation.

The background music track is played using mplayer.

The media player mplayer must be installed. It is used to play the
background music track.

 At the command prompt, enter: sudo apt-get install mplayer.

 It may take 10 minutes to load.

The mplayer does not paly audio on the Pi-4.

17

A Flash drive is optional. It needs to have the name: USB_DISK.
It can be used to configure the system “offline”, by adding files to this drive from
another PC and to download and analyze the data saved by the system offline
without removing the system from operation.
When the system boots up it will:

1- Download the files logfile.txt , datafile.txt and gps_data.csv as
gps_data_downloaded.csv.

2- If gps_data.csv file is on the FD, it is uploaded to the system’s SD card.
3- If the file est_dst.txt is on the FD it will change the time standard to Eastern

Standard or Daylight Savings time.
The Flash Drive should have two text files est.txt and dst.txt.

For Eastern Standard time the text file contains: 5EST
For Daylight Savings time the text file contains: 4DST
To change the time standard, copy either file to a new file est_dst.txt.

With the flash drive plugged into the system, the files will automatically be uploaded
when the system is rebooted.

As stated above, the audio clips used are stored in a separate folder.
In the /home/pi/gps_2017 directory, create a folder audio_tracks
Place the audio files, in .mp3 or .wav format, into the folder:
/home/pi/gps_2017/audio_tracks.

Tip: WAV files can be edited using Audacity, a free audio editing
program. MP3 files were used in a previous version of the system
that used an mp3 player and cannot be edited.
Tip: Files can be captured using Sound Trap, a free streaming audio
recorder.

18

AUTOSAVE to Flash Drive Introduced in version gps-404.py.

A feature was added that automatically copies the logfile.txt file to a flash drive, if it
is plugged into a USB port. The flash drive must have the name USB_DISK. This is
accomplished when the speed is less than 3 MPH and the latitude has changed from
the last time the file was saved.

If the system is stationary, the logfile will only be saved once.

############## Autosave logfile to flash drive named USB_DISK
 if (gpsd.fix.speed*2.236<3 and abs(lattsaved -latt) > 2*delta):
 print ' Copying logfile to flashdrive'
 copyfile('/home/pi/gps_2017/logfile.txt','/media/pi/USB_DISK/logfile.txt')
 lattsaved =latt
 print lattsaved

Autosave logfile to flash drive named USB_DISK
 if (gpsd.fix.speed*2.236<3 and abs(lattsaved -latt) > 2*delta)and os.path.isdir('/media/pi/USB_DISK'):
 print ' Copying logfile to flashdrive'
 copyfile('/home/pi/gps_2017/logfile.txt','/media/pi/USB_DISK/logfile.txt')
 lattsaved =latt
 print lattsaved

The routine if clause checks the speed, the change in latitude and whether the Flash
Drive is mounted. If it finds the drive it copies the logfile to it. If there is no drive in
the USB port, the programs continue to run without incident.

This allows the GPS System to continue to operate while the logfile data is analyze in
another system.

19

UPLOAD GPS DATA version 404-2

The problem: To change the GPS data, the system must be setup with a monitor,
mouse and keyboard and the gps_data.csv file must be modified.

The solution: Install a flash drive (named USB_DISK) with the new GPS data in the
file gps_data.csv.

Reboot the system.

The system does the following:

1- Checks if there is a flash drive named USB_DISK in the system.
2- Saves a copy of the logfile.txt on the flash drive.
3- Saves a copy of the gps1.py on the flash drive.
4- Checks if there is a gps_data.csv file is on the flash drive
5- Checks if there is a file est_dst.txt on the flash drive.
6- Checks if there is a datafile.txt on the system drive.
7- Saves a copy of the results to the file bootlog.txt to both the

/home/pi/gps_2017 directory and the flash drive.

rm_logfile.txt

You can delete the logfile.txt file from the system drive (the SD Card) automatically
when the system boots up by placing a file called rm_logfile.txt on the flash drive.
Remember that the logfile.txt is always saved to the flash drive and if the
rm_logfile.txt is on the flash drive it will be erased from the SD Card. Note that the
rm_logfile.txt is also erased from the flash drive. It must be placed on the flash drive
each time you want to erase the logfile.txt. It does not matter what is in the
rm_logfile.txt. As long as this file is present on the flash drive, it will erase the
logfile.txt on the system drive (the SD card) and then erase the rm_logfile.txt from
the flash drive. Just copy any file to rm_logfile.txt.

For example: cp est.txt rm_logfile.txt

Remember that the audio files listed in the gps_data.csv file must be present in the
/home/pi/gps_2017/audio_tracks directory.

Use the utility check_for_audio_files.py to verify that the audio clips are correct.

20

Note: There is a 4 second delay during boot up. Otherwise the system will not see
the flash drive!

There is another 10 second delay to allow the operator to read the display output of
the script if a monitor is connected to the system.

Tip:

Aside from the est.txt and the dst.txt files on the flash drive, copy the versions of the
gps_data.csv files with descriptions on the flash drive. This will make it easier to
change the gps_data.csv file on another computer.

Other Stuff

The software needed to read the GPS receiver can be installed from this link:

http://www.danmandle.com/blog/getting-gpsd-to-work-with-python/

There is another procedure that I used to install the GPS receiver from this link:

http://www.instantsupportsite.com/self-help/raspberry-pi/raspberry-globalsat-
353s4-install/

This worked when the initial installation was performed on both the 2 and the 2B
systems.

21

However, I tried it recently and found that the /lib/udev/gpsd.hotplug file does not
exist and I was unable to read the data from the receiver.

The SD chip used on the Raspberry Pi 2B works on the 3B and the Pi Zero.

If a Raspberry Pi 2B or 3B are used the time and date are correct

If a Raspberry Pi 2 is used the time will be correct, but the date is off by 7168 days!

Once this is installed, the system is functional and can be used.

Notes:

The system can play a different audio track at a location depending in the direction
of the train. There are times that you may not want to play a track in one direction.
In the folder audio_clips there is a file named silent.mp3 for this purpose.

The system to date only monitors the latitude data. When the train proceeds past
Bonsal Crossing Rd., the train’ heading is approximately north-west.

In warm weather, the announcer usually sits in north end of car 101. In cold weather
he sits in the caboose. He offset between these two positions is .7 times the
distance between these two points.

Or 150 ft. Times .7 or 105 ft. This translates into .00027degrees.

The GPS receiver chosen is the Globecast BU353.

22

.

It is a sealed weather proof unit with a USB interface and costs about $35.

http://www.instantsupportsite.com/self-help/raspberry-pi/raspberry-globalsat-
353s4-install/

Note: This installation worked fine when it was originally used in August
2016.

It is not working at this time.

There are also problems with it on the RaspPi-2B. The RaspPi-2 works fine.
See anomalies section for details and solution

The program uses python code developed by Dan Mandle. Here is the link:

http://www.danmandle.com/blog/getting-gpsd-to-work-with-python/

The first few lines of for gps1.py code are shown below:

import argv was used to display the file name of the program automatically

The remainder of the imports were from Dan Mendle.

A special thank you to Robert Malkin of Duke University. He is a volunteer at the
Visual World Investigate Lab at the Museum of Natural Sciences in Raleigh, NC. He
was very helpful in making the ctrl-c routine work. I could not have done this
without him.

23

System Setup
Hardware:

Raspberry Pi 3 with LED connected to ______
Globcast BU353 GPS receiver
Power supply
USB keyboard

Software:
Pre-configure 16 gig SD chip.

Adding the LED

24

GPS description - Other details

Auto Upload
Delays the running of the shell script for 3 seconds.
Otherwise the script does not run! A delay of 1 second does not work
A delay of 2 seconds works. Set the delay to 3 seconds.
When the cp_stuff.sh is copie, it sometimes must be made executable

readtime module
The est_dst.txt file contains one line.
For Eastern Standard time it is 5EST
For Daylight Savings time it is 4DST
The file is read with the "with open(......"
The line is converted to a string with y= str(content)
The offset is converted to an integer from y
The timetag is stripped froom the string y

The gps_data.csv file is imported by
from load_csv_data import command
The file is load_csv_data.py

The EDST(utc-gpsd) function converts the time to every day format.
The format of utc-gpsd is : 2018-04-08T22:43:10.000Z
Which outputs DST = 6:42:10 PM 04/8/18

There is an issue with this function during the last day of the month
For the last day of month, before midnight, the day is set to zero
ie 04/0/18. It should be 03/31/18

25

…….

Revision 4/28/20 gps-407-3-2.py

The update uses the function dst(gpsd.utc) to determine the starting dates of DST
and EST. This eliminates the need for the find_dst_import.py and read_data.txt
files.

Revision 3/20/20 gps-407-3.py added auto EST-DST correction. This

uses the find_dst_import.py routine to find the dates of DST and EST for that year.
The file find_dst_import.py file was added the gps_2017 directory and the
highlighted lines were added to make the gps-404-3.py file. When the GPS receiver
has locked on to the satellites, the date information is written to the read_data.txt
file. This data is read by the find_dst_import.py to determine the off_set. This is
only performed once, since the gps_lock and check_timetag variables are set to 1.

if latt >35 and gps_lock == 0:
 gps_lock = 1
 print 'GPS Locked'
 file = open('/home/pi/gps_2017/logfile.txt','a')
 file.write(EDST(gpsd.utc) +' '+'GPS Receiver Locked \n')
 file.write(' '+str(script))
 file.close()
 file = open('read_data.txt', 'w') # Saves time for find_dst_import
 file.write(gpsd.utc)
 file.close()

 check_timetag = 1
 from find_dst_import import tag
 timetag = tag
 if tag == "DST":
 off_set = 4
 else:
 off_set = 5

26

The est_dst.txt file is not needed and was deleted from the gps_2017 directory

The highlighted lines were deleted since they were no longer needed:

else:
 print 'NO DISK FOUND.'
 file.write('NO DISK FOUND.'+'\n')
 time.sleep(3)

################## Read offsett and timestamp from est_dst.txt
############### readtime.py
with open('/home/pi/gps_2017/est_dst.txt') as g:
 content = g.readlines() # reads the data

y=str(content) # converts the data to a string

offset = int(y[2:3]) # strips the offset data
timetag= y[3:6] # strips the timetag data

g.close()

from load_csv_data import*
def EDST(utc): # Strips time from gpsd.utc
 timee=utc[11:19]
 hr=utc[11:13]

See Appendix 11 for the details on finding the DST dates in the find_dst_import.py.

27

Revisions : 2/2/18 added autosave logfile to USB_DISK

The latest version is gps-404.py. This has the auto save of the logfile.txt to a flash
drive with the name USB_DISK .

9/18/18 Version gps-405 removed the cp_stuff.sh file and included the features
within the main program.

10/30/18 The latest version is 405-5

12/11/18 revised play.py Enter index number instead of file names . Requires the
text_file_2_array.py file

Created playcsv.py to play the audio files in current gps_data.csv file, except the
silence_0001.wav files.

1/16/19 Added the thread to play the audio clips

Added

#Creates a thread to play an audio Clip
def play_clip():
 playing_clip = 1
 os.system(xxx %sound)

Added:

file = open('/home/pi/gps_2017/logfile.txt','a')
 for x in range(0,len(locs)):
 if abs(lats[x] -latt) < delta:
 #os.system('killall omxplayer.bin') #stops playing audio clip
 playing_clip = 0 # Stops extra flashing
 time.sleep(.5)
 folder = '/home/pi/gps_2017/audio_tracks/'
 files = mp3s_nb[x]
 gain[x] = nb_gain[x]
 if direction == 's':

28

 files = mp3s_sb[x]
 gain[x] = sb_gain[x]
 sound = folder +files #
 print x, files, gain[x]
 ###xxx = 'omxplayer --vol '+ gain[x] +' %s'
 xxx = 'omxplayer -o local --vol '+ gain[x] +' %s'
 if files <>"silence.0001.wav":
 os.system('killall omxplayer.bin') #stops playing audio clip
 if files <>"silence.0001.wav":
 threading.Thread(target=play_clip).start() #Plays clip througj threas
#os.system(xxx %sound) # used to lay the clip
 lats[x] =lats[x] + 10 # takes the last played file out of list
 file.write('\n' + str(x)+',') # Tne number of the location list

3/9/19 When the Raspberry Pi is powered by the switching regulator installed in the amplifier, it
creates high frequency oscillations that show up as noise in the audio. To eliminate this interference,
a 1:1 audio transformer was added between the output of the Raspberry Pi and the input of the
amplifier.

To AUX In From Rasp Pi
on PA-105

4

5

6

NCNC

NCNC

NCNC

NC

From AUDIO OUT

70 VOLTS

COMMON

1

2

3
Bridge

Ted Dunn

Train PA Amplifier
Modifications

Drawn by:
Approv ed by :

1

2

AC
+
-

FUSE

3 NCNC

Rectifier

To 12 Volt Input
AC

1
2

3

1

2

3
4

5 6

12
 V

ol
ts

 D
C

12 Volts DC

Polarity DOES NOT matter
The BRIDGE RECTIFIER takes care of this.

2

1

3

4

5

6

Extension Cable

Test Cable

PA-105 Modif ied Rev 1

FUSE

7/24/18
Added 12v to 5v conv erter

To AUX In From Rasp Pi

3/9/16

Added audio transf ormer.
This is needed to isolate the
Pi when the switching regulator is used

To Raspberry Pi

5 Volts out

on PA-105

29

12/18/19

Added a background audio track to the system. Version gps-407-1.py.

A thread was added to play an audio track continuously

def play_background_clip():

 os.system("mplayer /home/pi/gps_2017/audio_tracks/xmas_90_minute_track.mp3 -loop 10 -af
volume=-20")
threading.Thread(target=play_background_clip).start()

Since we are using omxplayer for the individual audio tracks and we use the killall
command to stop omxplayer, we are using mplayer to play the background music
track. Note that is was necessary to use the absolute path for the location of the
audio track. If we use the relative path, the system would not play the track on boot
up.

30

Appendix 1 OMXPLAYER keyboard commands (https://elinux.org/Omxplayer)

Key Action

1 decrease speed
2 increase speed
< rewind
> fast forward
z show info
j previous audio
stream
k next audio stream
i previous chapter
o next chapter
n previous subtitle
stream
m next subtitle
stream
s toggle subtitles
w show subtitles
x hide subtitles
d decrease subtitle
delay (- 250 ms)
f increase subtitle
delay (+ 250 ms)
q exit omxplayer
p / space pause/resume
- decrease volume
+ / = increase volume
left arrow seek -30 seconds
right arrow seek +30 seconds
down arrow seek -600 seconds
up arrow seek +600 seconds

31

OMXPLAYER documentation:
https://www.raspberrypi.org/documentation/raspbian/applications/omxplayer.md

To adjust the volume use the command: omxplayer --vol ‘xxxx’ ‘filename’

Where xxx is in millibels. For a 6 db change xxxx= 600.

A +6 decibel (db) change doubles the audio level. A -6 db change halfs the audio level.

http://coretechgroup.com/dbm_calculator/

Appendix 2 USB Boot routine

When a USB flash drive is installed in a Raspberry Pi, it mounts in the /media/pi
folder.

Opens bootlog.txt file to write.

Checks for the presence of the USB Flash Drive with the name USB_DISK.
If True:

 Copies logfile.txt, gps1.py and gps_data.csv as gps_data_downloaded to Flash Drive.

 Note: This will overwrite any existing files on the USB Flash Drive.

32

Checks if rm_logfile.txt is on the Flash Drive.

 If True:
 Deletes the logfile.txt from the system SD card.
 Deletes the rm_logfile.txt from the Flash Drive.

Checks if gps_data.csv is on Flash Drive.

If True:

 Saves the gps_data.csv file as old_gps_data.csv on SD card.
Saves the gps_data.csv file as old_gps_data.csv on FD.
Copies gps_data.csv file from Flash Drive to the system SD card.
Deletes the gps_data.csv file from the Flash Drive.

Checks if the est_dst.txt file in on the Flash Drive.

 If True:

 Copy est_dst.txt to system SD card
 Delete est_dst.txt file from Flash Drive.

Checks if there is a datafile.txt file on the system SD card.

 If True:

 Copies datafile.txt to the Flash Drive.

Checks if there is a rm_datafile.txt on the Flash Drive.

 If True:

 Deletes the datafile.txt from the system SD card
 Deletes the rm_datafile.txt from the Flash Drive.

Closes bootlog.txt file

Copies bootlog.txt file to Flash Drive.

Appendix 3 Pi-Zero analog audio output

33

How Other Pi's Create Audio
https://learn.adafruit.com/introducing-the-raspberry-pi-zero/audio-outputs

GPIO #18 is also known as PWM0 and in the original Pi was coupled with a very basic RC filter to
create the audio output:

If you don't mind getting a few 150 and 270 ohm resistors, and two each of about 33nF (also
known as 0.033uF) and 10uF capacitors, you can basically recreate those two filters.

Now all you need is access to PWM0_OUT and PWM1_OUT, which are...on GPIO #40 and #45
and are not brought out on the Pi Zero. Tragedy? Give up? No! You can get to PWM0 on GPIO
#18 (ALT5) and PWM1 on GPIO #13 (ALT0) or GPIO #19 (ALT5)

Simply adding the following line to your /boot/config.txt will reconfigure the pins at boot
without any external software or services:
 dtoverlay=pwm-2chan,pin=18,func=2,pin2=13,func2=4

34

35

Appendix 4 Controlling the Rasp from a remote computer.

Putty FileZilla

Putty is an open source software that will allow you to open a text window on a remote computer. You
must know the IP address of the Raspberry Pi (see below) and the user name and password. They are
respectively pi and raspberry. Simply download putty and install on your computer

FileZilla is a free FTP client that needs to be installed on the remote computer.

After the FTP server software has been installed on the Raspberry Pi, the FTP client can be used to
transfer files between the two systems. See the link below.

For these programs to load, you need to know the IP address of the Rasp Pi.

In a text window enter ifconfig

Install putty on the pc and you will be able to control the Rasp Pi from a text window on the pc.

The SSH must be enabled in the Rasp Pi. In a text widow, enter raspi-config…..

ftp or File Transfer Protocol. This will allow for moving files from the Rasp Pi to and from a windows
system. An ftp server is installed on the Rasp Pi and an ftp client is installed on the PC. FileZilla works
well.

See this link: https://howtoraspberrypi.com/setup-ftp-server-raspberry-pi/ for details on the installation of the ftp server on
the Rasp Pi.

36

In a text window enter sudo apt install proftpd.

Appendix 5 GUI Control of the Raspberry Pi from a remote computer.

Real VNC Viewer

Detailed installation:

 https://www.raspberrypi.org/documentation/remote-access/vnc/README.md

Run sudo apt-get update
Run sudo apt-get install realvnc-vnc-server realvnc-vnc-viewer
Run sudo raspi-config

37

After the install was completed, I ran raspi-config but could not find VNC!

Select Advanced options

Use down arrow to scroll down and show additional options, to A0 Update. It is below the last
item shown. Select AO Update. This will take several minutes to complete. It will then display:

38

Now you can select Interfacing Options.
Select VNC and enable it.
Select finish.

Reboot the Rasp Pi and you will see:

If you have RealVNC viewer on the controlling unit, it will connect!

39

Appendix 6 Setting Static IP Address

Works on Pi-Zero. NOT on Pi-3:
 https://www.raspberrypi.org/learning/networking-lessons/rpi-static-ip-address/

If the desired static IP address of the raspberry pi is 192.168.1.201,

Add the following at the bottom of the /etc/dchpcd.conf file:

interface eth0

static ip_address=192.168.0.201/24
static routers=192.168.0.1
static domain_name_servers=192.168.0.1

interface wlan0

static ip_address=192.168.0.201/24
static routers=192.168.0.1
static domain_name_servers=192.168.0.1

40

41

Appendix 7. Stopping the audio clip gps-406-6-1.py

There is a problem if the audio clip is longer than the time between locations. If this is the case,
the clip will continue to play and the next clip will be skipped.

In the current system, the programs runs until it finds a location that matches one in the
gps_data.csv file. It then halts the program and plays the clip. When the clip is finished, the
program continues to run until it finds another location. If the audio clip is long and is playing
while another location is past, the system will skip that location. By using a thread to play the
audio clip, the system continues to run while the thread plays the audio clip. It can detect the
next location and stop the clip using the killall function. The current location’s clip can then be
played.

To solve this problem, a thread was added (play_clip())to play the audio clip.

def play_clip():
 print'Beginning Thread play_clip'
 os.system(xxx %sound)

When a new location is detected, the command :

os.system('killall omxplayer.bin')

is issued to stop omxplayer, if it is still running.

Then the command:

threading.Thread(target=play_clip).start()

Is issued to play the next clip

There is of course another problem. There are place holder silent audio clips in the gps-
data.csv file. The name of these clips is silent_0001.wav

The program will look to see if the audio clip starts with sile . If it find this it skips stopping the
playback. Below are the 4 lines of code that inhibit the thread when a silent file is detected

 if files[0:4] <>"sile":
 os.system('killall omxplayer.bin') #stops playing audio clip

42

 if files[0:4] <>"sile":
 threading.Thread(target=play_clip).start() #Plays clip througj threas

Below is the segment of the code that plays the audio clips at a specific latitude

 file = open('/home/pi/gps_2017/logfile.txt','a')
 for x in range(0,len(locs)):
 if abs(lats[x] -latt) < delta:
 #os.system('killall omxplayer.bin') #stops playing audio clip
 playing_clip = 0 # Stops extra flashing
 time.sleep(.5)
 folder = '/home/pi/gps_2017/audio_tracks/'
 files = mp3s_nb[x]
 gain[x] = nb_gain[x]
 if direction == 's':
 files = mp3s_sb[x]
 gain[x] = sb_gain[x]
 sound = folder +files #
 print x, files, gain[x]
 ###xxx = 'omxplayer --vol '+ gain[x] +' %s'
 xxx = 'omxplayer -o local --vol '+ gain[x] +' %s'
 if files[0:4] <>"sile":
 os.system('killall omxplayer.bin') #stops playing audio clip
 if files[0:4] <>"sile":
 threading.Thread(target=play_clip).start() #Plays clip througj threas
#os.system(xxx %sound) # used to lay the clip
 lats[x] =lats[x] + 10 # takes the last played file out of list
 file.write('\n' + str(x)+',') # Tne number of the location list
 file.write (str(gpsd.fix.speed *2.236)[0:5]+' mph' + ' ' + direction +',')
 file.write (str(gpsd.fix.track)+',')
 file.write(EDST(gpsd.utc)+',')
 file.write(' '+files +',') #the audio file name
 file.write (gain[x]+',')
 file.write(' '+locs[x]+ ',') #the location name
 file.write(' '+str(gpsd.fix.latitude)+',')
 file.write(' '+str(version)+'\n')
 #lats[x] =lats[x] + 10 # takes the last played file out of list
 last = x #### The last location's lats to reset it
 x = x+1
 time.sleep(1)
 file.close()
 lattold = latt

43

Appendix 8: Building the GPS system on the Raspberry Pi SD card

1- Copy NOOBS to SD card

Use a 16 gig type 10 SD chip.
Format the SD chip with SDFormatter
Download the latest NOOBS zip file.
Extract the zip file and copy the files to the SD memory card.

2- Boot Rasp Pi Select only Raspian

3- Install gps software
 Do not connect the gps receiver
 At the command line enter:
 sudo apt-get install python gpsd gpsd-clients
 The software will install.
 Enter “Y” when promted

4- Install mplayer software
 At the command line:
 sudo apt-get install mplayer
 The software will install.

Copy the gps_2017 folder containing the operating program from a flash drive to the /home/pi directory

5- Copy the gps_2017 folder containing the operating program from a flash drive to the /home/pi
directory

Instructions to create the gpssock file.
This file should already be in the gps_2017 folder

Create the gpssock file in the gps_2017 folder
 This file contains three lines:
 either
 sudo killall gpsd
 sudo gpsd /dev/ttyUSB0 -F /var/run/gpsd.sock
 sudo service ntp restart
 or
 sudo systemctl stop gpsd.socket
 sudo systemclt disable gpsd.socket
 sudo gpsd /dev/ttyUSB0 -F /var/run/gpsd.sock

 Make it executable:
 chmod +x gpssock
5-Install the GPS receiver

6- Run the gpssock file
At the command line, enter:
./gpssock
The . / is the command to run an executable file.

44

7- Run the trest program. At the command lineenter::
 cgps -s
 You should see the gps data

7 Add the line /home/pi/gps_2017/./gpssock & at the bottom of the /etc/profile file.
NOTE: The apersand (&) character is important.

 This file is needed otherwise the gps receiver will not communicate with the Raspberry Pi. The
exact reason for this is unclear.

7-a Alterative to the above, add the line:
 os.system('./gpssock') (Added on gps_407-2-2-1-1)
 This restarts the gps software without changing the profile file.
 The downside to this is that the cgps -s program will not run until gps1.py is run.

8- Install mplayer. This program is needed to play the background music
track. (Added on gps_407-1)
At the command prompt, enter: sudo apt-get install mplayer. It may take
10 minutes to load.

9- Launch the GPS program
At the command line enter:

 sudo python /home/pi/gps_2017/gps1.py

45

46

 9- Setup to Auto start on power up
In order to have the system run automatically when power is applied the file: .desktop must be
in the folder /home/pi/.config/autostart.
Create the autostart folder in the .config directory
Create the .desktop file in the autostart directory
Here are the three lines in the .desktop file:

Revised 3/23/19 for NOOBS 3.0

[Desktop Entry]
Type = Application
Exec = lxterminal -e sudo python /home/pi/gps_2017/gps1.py

The .config folder exists in the /home/pi folder. Create the autostart folder In the .config
folder. Then create the .desktop file in the autostart folder.

47

Appendix 9 Run a Python program automatically on startup

This method will start a Python Program in a terminal widow.
The program is xyz.py and it is in the /home/pi/abc directory.

To do this, an autoexec.sh file is created in the startup directory, /home/pi. This is an
executable linux shell file. It will run the Python file in the correct directory.

The name autoexec was chosen in remembrance of the unique DOS batch file, autoexec.bat.
This file was automatically run on bootup in the DOS operating system. In Linux, the name of
the file is not important.

To run this shell script on startup, it must be in the /home/pi/.config/autostart/.desktop
file.

1- Create the autostart directory in the /home/pi/.config directory.
a. Start from the /home/pi directory.
b. Change to the .config directory: cd .config
c. Create the autostart directory: mkdir autostart

2- Create the .desktop file: sudo nano .desktop

a. Enter the follow 3 lines in the text editor:
i. [Desktop Entry]

Type = Application
Exec = lxterminal -e ./autoexec.sh (The ./ is used to run
executable files.)

ii. Press ctrl-o
iii. Press Enter to save the file.
iv. Pres ctrl-x to exit the text editor.

3- Create the autoexec.sh file to run the xyz.py Python program in the

/home/pi/abc directory.
a. Start in the /home/pi directory.

i. Create the autoexec.sh file: sudo nano autoexec.sh
ii. Enter the following 2 lines:

cd abc
python xyz.py

iii. Press ctrl-o
iv. Press Enter to save the file.
v. Pres ctrl-x to exit the text editor.

b. Make the autoexec.sh file executable chmod +x autoexec.sh.

Note. The autoexec.sh file is not necessary. To run the file it could be placed in the last line of
the .desktop file: Exec = lxterminal -e ./python home/pi/abc/xyz.py.

48

The advantage of the autoexec.sh file is that it makes it easier to change the autorun program.
1-The file to be edited is in the /home/pi directory instead of the /home/pi/.config/autostart
directory.
2- Several autoexe.xx files can be save and easily be rename to the autoexec.sh file.

For example if one wishes to run a program name gps1.py which is located in the
/home.pi/gps_2017 directory.

The autoexec.sh file in the /home/pi directory will ha

Appendix 10 MPLAYER keyboard controls

http://www.keyxl.com/aaa2fa5/302/MPlayer-keyboard-shortcuts.htm

MPlayer Keyboard Shortcuts

Keyboard control

<- and -> Seek backward/forward 10 seconds.

up and down Seek forward/backward 1 minute.

pgup and pgdown Seek forward/backward 10 minutes.

[and] Decrease/increase current playback speed by 10%.

{ and } Halve/double current playback speed.

backspace Reset playback speed to normal.

< and > Go backward/forward in the playlist.

ENTER Go forward in the playlist, even over the end.

HOME and END next/previous playtree entry in the parent list

INS and DEL (ASX playlist only) next/previous alternative source.

p / SPACE Pause (pressing again unpauses).

.
Step forward. Pressing once will pause movie, every consecutive press will play
one frame and then go into pause mode again (any other key unpauses).

q / ESC Stop playing and quit.

+ and - Adjust audio delay by +/- 0.1 seconds.

/ and * Decrease/increase volume.

9 and 0 Decrease/increase volume.

(and) Adjust audio balance in favor of left/right channel.

m Mute sound.

_ (MPEG-TS and libavformat
only)

Cycle through the available video tracks.

49

(DVD, MPEG, Matroska, AVI
and libavformat only)

Cycle through the available audio tracks.

TAB (MPEG-TS only) Cycle through the available programs.

f Toggle fullscreen (also see -fs).

T Toggle stay-on-top (also see -ontop).

w and e Decrease/increase pan-and-scan range.

o Toggle OSD states: none / seek / seek + timer / seek + timer + total time.

d
Toggle frame dropping states: none / skip display / skip decoding (see -framedrop
and -hardframedrop).

v Toggle subtitle visibility.

j Cycle through the available subtitles.

y and g Step forward/backward in the subtitle list.

F Toggle displaying forced subtitles .

a Toggle subtitle alignment: top / middle / bottom.

x and z Adjust subtitle delay by +/- 0.1 seconds.

r and t Move subtitles up/down.

i (-edlout mode only) Set start or end of an EDL skip and write it out to the given file.

s (-vf screenshot only) Take a screenshot.

S (-vf screenshot only) Start/stop taking screenshots.

I Show filename on the OSD.

! and @ Seek to the beginning of the previous/next chapter.

D (-vo xvmc, -vf yadif, -vf
kerndeint only)

Activate/deactivate deinterlacer.

Hardware accelerated video output
1 and 2 Adjust contrast.

3 and 4 Adjust brightness.

5 and 6 Adjust hue.

7 and 8 Adjust saturation.

SDL Video Output Driver
c Cycle through available fullscreen modes.

n Restore original mode.

Multimedia Keyboard
PAUSE Pause.

STOP Stop playing and quit.

PREVIOUS and NEXT Seek backward/forward 1 minute.

50

GUI Support (if compiled in)
ENTER Start playing.

ESC Stop playing.

l Load file.

t Load subtitle.

c Open skin browser.

p Open playlist.

r Open preferences.

If TV or DVB support compiled
h and k Select previous/next channel.

n Change norm.

u Change channel list.

Navigate menus (if DVNAV support)
keypad 8 Select button up.

keypad 2 Select button down.

keypad 4 Select button left.

keypad 6 Select button right.

keypad 5 Return to main menu.

keypad 7 Return to nearest menu (the order of preference is: chapter->title->root).

keypad ENTER Confirm choice.

Teletext support (if compiled)
X Switch teletext on/off.

Q and W Go to next/prev teletext page.

mouse control
button 3 and button 4 Seek backward/forward 1 minute.

button 5 and button 6 Decrease/increase volume.

joystick control
left and right Seek backward/forward 10 seconds.

up and down Seek forward/backward 1 minute.

button 1 Pause.

button 2 Toggle OSD states: none / seek / seek + timer / seek + timer + total time.

51

button 3 and button 4 Decrease/increase volume.

3.11. Software Volume adjustment

Some audio tracks are too quiet to be heard comfortably without amplification. This becomes a
problem when your audio equipment cannot amplify the signal for you. The -softvol option
directs MPlayer to use an internal mixer. You can then use the volume adjustment keys (by
default 9 and 0) to reach much higher volume levels. Note that this does not bypass your sound
card's mixer; MPlayer only amplifies the signal before sending it to your sound card. The
following example is a good start:

mplayer quiet-file -softvol -softvol-max 300

The -softvol-max option specifies the maximum allowable output volume as a percentage of
the original volume. For example, -softvol-max 200 would allow the volume to be adjusted
up to twice its original level. It is safe to specify a large value with -softvol-max; the higher
volume will not be used until you use the volume adjustment keys. The only disadvantage of a
large value is that, since MPlayer adjusts volume by a percentage of the maximum, you will not
have as precise control when using the volume adjustment keys. Use a lower value with -
softvol-max and/or specify -volstep 1 if you need higher precision.

The -softvol option works by controlling the volume audio filter. If you want to play a file at a
certain volume from the beginning you can specify volume manually:

mplayer quiet-file -af volume=10

This will play the file with a ten decibel gain. Be careful when using the volume filter - you could
easily hurt your ears if you use too high a value. Start low and work your way up gradually until
you get a feel for how much adjustment is required. Also, if you specify excessively high values,
volume may need to clip the signal to avoid sending your sound card data that is outside the
allowable range; this will result in distorted audio.

52

Added the ability to play a background audio track.

The track must be in the /home/pi/gps_2017/audio_tracks folder

To adjust the sound level, a keyboard must be connected.
Increase volume 0 key
Decrease volume 9 key

To play a background audio track, enter the data on the next to the last row. Enter the name of
the track in column 4, the gain in column 5 and the number of times the track needs to be
repeated in column 7.

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7

The last two lines in the gps_data.csv file are unique. The background audio track should be
entered in the next to last line. The latitude of the bottom line should be set to 50 and the line
above should be set to 40

53

Appendix 11 Find Daylight Savings Time dst(gpsd.utc) 4/28/2020

This python function, dst(utc), calculates the start date of Daylight savings time and the start date of Eastern
standard time, for the date entered.

DST begins on the second Sunday in March and Ends on the first Sunday in November.

Today’s date is entered as a string in the format of yyyy-mm-dd.

The year, month and date are extracted and assigned to the variable tday.

The algorithm to find the start and end date of DST is as follows:

Find the number of the day of January first jan1=date(y,1,1) of the current year.

Find the day of the week for March 1.

Find the date of the second Sunday.

Find the number of the day for the second Sunday in March, DST start.

Find the day of the week for November 1.

Find the date of the first Sunday.

Find the number of the day for the first Sunday in November, EST start.

If the number of the day of today falls within DST start and EST start, today is on DST.

Otherwise, today is on EST

See Appendix 11-1 for all of the options of when DST starts and when EST starts.

The function imports the date functions from the standard library.

In Linux each day is assigned a number beginning on January 1, 1970

The number of the January 1 is assigned the variable jan1.

 jan1 = date(yr,1,1)

It generates three dictionaries. The dst{} dictionary and the est{} dictionaly contain the offset of the first day of the
month to the start of DST in March and the start of EST in November. See Appendix 1.

The dow{} dictionary shows the days of the week based on the numeric value from datetime. 0 is Sunday and 6 is
Saturday.

The current date gpsd.utc is in the format of yyyy-mm-dd.

54

The yr, mon, and da variables are extracted from gpsd.utc.

yr = int(gpsd.utc)[0:4])
As an example, if gpsd = 2020-03-17, yr =2020
mon = int(gpsd.utc)[5:7])
da = int((gpsd[8:10])

Today is the variable tday.
 tday = date(yr,min,da)
Today’s day of the week is dayofweek

The number for the day of January 1 of the year above is assigned to the variable jan1.
 Jan1 = date(yr,1,1)
The day of the week of March 1, of the year above is assigned to the variable mar1.
 mar1 = datetime.date(yr, 3, 1).weekday() # days 0-6
Similarly, for November 1.

From the dstr{} and est{} dictionaries the starting dates for daylight savings time and eastern standard
time are the variables dst_start and est_start.
 dst_start = dst.get(mar1) # This is the offset from Mar 1

 est_start = est.get(nov1)

The number of the starting dates for daylight savings time and eastern standard times are:

 start_dst= int((date(yr,3,dst_start)-jan1).days)
 start_est = int((date(yr,11,est_start)-jan1).days)

Finally the timetag, either DST or EST is determined by:

 if ttday-start_dst <0 or start_est - ttday <=0:
 tag= 'EST'
 else:
 tag ='DST'
 print 'Our time zone is on ',tag
 timetag = tag
 return (timetag)

An interesting observation regarding calendars is that March 1 and November 1, always occur on the same day of
the week, regardless of the year.

55

Listing of dst(x)

def dst(utc):
 ####
 ###Finds the start of EST and DST from today's date
 import datetime
 from datetime import date

 dst = {0:14,1:13,2:12,3:11,4:10,5:9,6:8} # off-set from Mar 1 to start
of DST
 est = {0:7,1:6,2:5,3:4,4:3,5:2,6:1} # off_set from Nov 1 to start of
EST
 dow =
{0:'Monday',1:'Tuesday',2:'Wednesday',3:'Thursday',4:'Friday',5:'Saturday'
,6:'Sunday'}

 xxx = gpsd.ut
 yr = int(xxx[0:4])
 mon = int(xxx[5:7])
 da = int(xxx[8:10])
 tday =date(yr,mon,da)

 dayofweek = datetime.date(yr, mon, da).strftime("%A")

 # find Jan 1 of year
 jan1 = date(yr,1,1)

 #find mar1
 mar1 = datetime.date(yr, 3, 1).weekday()# days 0-6
 nov1 = datetime.date(yr, 11,1).weekday()
 print 'March 1 is on a :', dow.get(mar1)
 print 'November 1 is on a :', dow.get(nov1)
 dst_start = dst.get(mar1) # This is the offset from Mar 1
 est_start = est.get(nov1)

 print 'Today is :',xxx
 print 'Today is ',dayofweek,' ',tday
 print 'Daylight savings time starts on Sunday March' ,
dst.get(mar1),'th in ',yr
 print 'Estern Standard time starts on Sunday
November',est.get(nov1),'th in ',yr

 print xxx
 yr= int(xxx[0:4])
 mon = int(xxx[5:7])
 da = int(xxx[8:10])
 tday =date(yr,mon,da)
 dayofweek = datetime.date(yr, mon, da).strftime("%A")

 # find Jan 1 of year
 jan1 = date(yr,1,1)

56

 #find mar1
 mar1 = datetime.date(yr, 3, 1).weekday()# days 0-6
 nov1 = datetime.date(yr, 11,1).weekday()
 print 'March 1 is on a :', dow.get(mar1)
 print 'November 1 is on a :', dow.get(nov1)
 dst_start = dst.get(mar1) # This is the offset from Mar 1
 est_start = est.get(nov1)

 print 'Today is :',xxx
 print 'Today is ',dayofweek,' ',tday
 print 'Daylight savings time starts on Sunday March' ,
dst.get(mar1),'th in ',yr
 print 'Estern Standard time starts on Sunday
November',est.get(nov1),'th in ',yr
 ttday =int((tday-jan1).days) # Number of days between today and 1/1
 print dst_start
 print est_start
 print 'Number of days from Jan 1 to today ;',ttday
 print 'tday: ',tday
 print date(yr,3,dst_start)
 print date(yr,11,est_start)
 start_dst= int((date(yr,3,dst_start)-jan1).days)
 start_est = int((date(yr,11,est_start)-jan1).days)

 print start_dst
 print start_est

 if ttday-start_dst <0 or start_est - ttday <=0:
 tag= 'EST'
 else:
 tag ='DST'
 print 'Our time zone is on ',tag
 timetag = tag
 return (timetag)

57

Appendix 11-1

 The start of Daylight Savings Time

 is the second Sunday in March

 Sun Mon Tue Wed Thu Fri Sat

Python Day
Number 6 0 1 2 3 4 5

 If March 1 is Mon 1 2 3 4 5 6

 7 8 9 10 11 12 13

 DST starts 14

 If March 1 is Tue 1 2 3 4 5

 6 7 8 9 10 11 12

 DST starts 13 14

 If March 1 is Wed 1 2 3 4

 5 6 7 8 9 10 11

 DST starts 12 13 14

 If March 1 is Thu 1 2 3

 4 5 6 7 8 9 10

 DST starts 11 12 13 14

 If March 1 is Fri 1 2

 3 4 5 6 7 8 9

 DST starts 10

 If March 1 is Sat 1

 2 3 4 5 6 7 8

 DST starts 9

 If March 1 is Sun 1 2 3 4 5 6 7

 DST starts 8 9 10 11 12 13 14

58

 The start of Eastern Standard Time

 is the first Sunday in November

 Sun Mon Tue Wed Thu Fir Sat

Python Day
Number 6 0 1 2 3 4 5

 If Nov 1 is Mon 1 2 3 4 5 6

 EST starts 7

 If Nov 1 is Tue 1 2 3 4 5

 EST starts 6 7

 If Nov1 is Wed 1 2 3 4

 EST starts 5 6 7

 If Nov 1 is Thu 1 2 3

 EST starts 4 5 6 7

 If Nov 1 is Fri 1 2

 EST starts 3 4 5 6 7

 If Nov 1 is Sat EST starts 1

 2 3 4 5 6 7

 If Nov 1 is Sun EST starts 1 2 3 4 5 6 7

59

Appendix 12 Emulate a key press in a Python script.

This technique is listed to vary the volume of the audio tracks based on the speed
of the train.

Xdotool

This works for numbers and letters. Not for special characters!

The command line is:
xdotool key [enter key]
I first tested that it would work using p for pause in the program listed below.

I had one additional problem. It did not work for special characters. And I needed + and -, for omxplayer!

I tried using ascii codes for special characters.
If you type ctrl-shift u and then the ascii code from the command line it does work.

xdotool key clrl+shift u 2b

2b is the hex for 43, the ascii for +.

But there is no way to do this in a python script (that I could find).

I posted a message on stack overflow and they provided the solution:

xdotool key plus
and
xdtool key minus

And it works in a python script.

 os.system('xdotool key minus')

Below is the python script to test the procedure

60

################################
ascci for'p' is 112 base 10, 1110000 base 2, 70 in base 16
ascci for'+' is 43 base 10, 101011 base 2, 2B in base 16
ascci for'p' is 45 base 10, 1110000 base 2, 2D in base 16
xdotool ctl+shift u 70 returns p
import os
from gps import *
from time import *
import time
import threading
a=1

#Creates a thread to play an audio Clip
def play_clip():
 playing_clip = 1
 os.system(xxx %sound)

xxx = 'omxplayer -o both --vol 0 %s'
sound ='tone.mp3'
threading.Thread(target=play_clip).start()
print 'starting tone'
time.sleep(5)
while a==1:
 #os.system('echo -n "-" > /proc/$(pidof omxplayer.bin)/fd/0')
 #os.system('echo - > omxplayer.bin')
 print"ttt"
 time.sleep(1)
 os.system('xdotool key minus')
 time.sleep(1)
 os.system('xdotool key plus')

